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SUMMARY

We consider the effects of critical Tayer nonlinearity on spatially grow-
ing oblique instability waves on nominally two-dimensional shear layers between
parallel streams. The analysis shows that three-dimensional effects cause non-
linearity to occur at much smaller amplitudes than it does in two-dimensional
flows. The nonlinear instability wave amplitude is determined by an integro-
differential equation with cubic type nonlinearity. The numerical solutions to
this equation are worked out and discussed in some detail. HWe show that they
always end in a singularity at a finite downstream distance.

1. INTRODUCTION

External excitation of (convectively unstable) free shear layers between
parallel streams produces spatially growing instability waves that are ini-
tially governed by linear dynamics for sufficiently small excitation ampli-
tudes. While the instability amplitude continues to increase with increasing
downstream distance, its local growth rate must ultimately decrease due to vis-
cous spreading of the mean shear layer. Nonlinear effects can then become
important in a “"critical layer" at the transverse position where the mean flow
and instability wave phase velocities are equal (once the instability wave
amplitude becomes sufficiently large and its growth rate becomes sufficiently
small). The unsteady critical layer flow is then governed by a nonlinear
vorticity equation, while the motion outside the critical layer remains essen-
tially linear. The external instability wave growth rate is, however, com-
pletely controlled by the noniinear dynamics of the critical layer.

There are now too many nonlinear critical layer analyses in the litera-
ture for us to summarize here. MWe refer the reader to the excellent review by
Masiowe (1986) for nonlinear critical layers in general and to the one by
Stewartson (1981) for Rossby-wave critical layers in particular. Here it is
only appropriate to mention the analyses specifically concerned with spatially
evolving flows. Huerre (1980, 1987) considers the two-dimensional incompres-
sible shear layer in the viscous critical layer regime where the nonlinear
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effects enter only at higher order. Huerre and Scott (1980) and Robinson
(1974) consider the strongly nonlinear regime, but their choice of scaling pre-
cludes the possibility of matching their results onto the linear upstream
solution.

Goldstein and Leib (1988) and Goldstein and Hultgren (1988) overcame this
difficulty, but again consider only the incompressible case. They consider
only a two-dimensional flow, since the two-dimensional instability wave is the
most rapidly growing linear mode in that case. However, the oblique modes
exhibit the most rapid growth in sufficiently high Mach-number supersonic shear
layers (Gropengeisser, 1969; Jackson and Grosch, 1988). Goldstein and Leib
(1989) consider the case where the unsteady flow evolves from a single oblique
mode, in which case it is appropriate to suppose that the initial instability
wave grows in its propagation direction. The cross flow velocity effects can
then be eliminated from the analysis by use of an appropriate "Squire trans-
form," but the critical layer nonlinearity still behaves quite differently
from the incompressible case - primarily because the temperature fluctuations
have algebraic singularities in the critical layer and therefore become very
large relative to the remaining velocity components causing the critical ltayer
nonlinearity to occur at a much smaller amplitude vis-a-vis the two-dimensional
isothermal case. The resulting critical layer nonlinearity is then weak in the
sense that the flow is governed by linear dynamics to lowest order of approxi-
mation, with nonlinearity entering only through the higher order (inhomoge-
neous) terms. The instability wave growth rate is still controlled by the
nontinear terms, but can now be calculated from an amplitude equation similar
to the one found by Hickernell (1984) for the Rossby wave singular modes.

Here, we consider the case where the initial instability wave grows in
the streamwise direction. It is then appropriate to suppose that there are
two oblique modes with the same frequency and streamwise wave number but with
equal and opposite (real) spanwise wave numbers in order to represent a fixed
spanwise structure. (In real flows the allowable spanwise wave numbers might
be selected by the side-wall positions.) The cross flow velocity fluctuations,
which have the same algebraic singularity in the critical layer as the tempera-
ture fluctuations, now become coupled to the velocity fluctuations in the plane
of the wave, causing the critical layer nonlinearity to again become important
at smaller amplitudes than in the two-dimensional incompressible case. In fact
the nonlinear oblique mode interaction causes the critical layer nonlinearity
to occur at even smaller amplitudes than in the single mode compressible case
(Goldstein and Leib, 1989). Critical layer nonlinearity now becomes_important
when the instability wave growth rate is 0Ce!/3) rather than 0(e2/5), as in
the Goldstein and Leib (1989) case, where ¢ denotes the characteristic insta-
bility wave amplitude at the start of the nonlinear region.

While the phenomenon is of most importance in supersonic shear layers, we
restrict the analysis to the incompressible case because the nonlinear criti-
cal layer dynamics are unaffected by compressibility effects, and their inclu-
sion would greatly complicate the analysis. Moreover, the final amplitude
equation (3.69), which is the principal result of this paper, remains valid
for the compressible case. The instability amplitude outside the critical
layer can again be determined from an amplitude equation because the critical
layer nonlinearity is still weak. The equation is similar to that of Goldstein
and Leib (1989) in that it is an integro-differential equation with cubic non-
linearity, but the structure of the nonlinear kernel function is now somewhat
different from theirs. The equation still has to be solved numerically. This



is accomplished by using a fourth-order predictor-corrector scheme to inte-
grate in the downstream direction, starting from the upstream linear state
which is prescribed far upstream in the flow (relative to the streamwise
length scale of the nonlinear region).

The calculated instability wave amplitudes initially follow the pre-
scribed linear growth, but soon begin to either saturate or increase their
rate of growth when the nonlinear effects come into play. Cumulative history
effects eventually reverse these trends, causing a rapid increase in amplitude
which ends in a singularity at a finite downstream distance. The local asymp-
totic solution of the amplitude equation is derived. It shows that the flow
will become fully nonlinear everywhere in the shear layer and that the motion
will then be governed by the full three-dimensional Euler's equations in the
next stage of evolution downstream of the weakly nonlinear region.

The overall plan of the paper is as follows. The problem is formulated
in section 2, where we show how the nonlinear critical layer gradually evolves
from the strictly linear finite growth rate solution. The flow outside the
critical layer is a linear, unsteady three-dimensional perturbation about the
two-dimensional mean shear layer flow, which can be treated as locally paral-
lel on the streamwise length scale over which the nonlinear effects take
place. The latter occur entirely within the critical layer to the order of
approximation of the analysis and determine the unknown amplitude function in
the external solution. The transverse velocity fluctuation is taken as the
basic variable for the external flow, and the (linear) equation for this quan-
tity is expressed in terms of the "Squire coordinates" associated with either
of the two oblique modes.

We introduce a "slowly varying" amplitude function, which depends on the
streamwise coordinate through an appropriately scaled variable and is ulti-
mately determined by the nonlinear flow in the critical layer, which we analyze
in section 3. Matching with the linear external instability waves leads to the
nonlinear integro-differential equation that determines the amplitude of those
waves. The numerical and asymptotic solutions to this equation are discussed

in section 5.

2. FORMULATION AND SOLUTION OUTSIDE THE CRITICAL LAYER

We are concerned with a nearly inviscid incompressible shear flow between
two parallel streams with nominally uniform velocities U¢1) > U(2). The
upstream flow consists of a steady two-dimensional shear layer and a pair of
oblique (i.e., three-dimensional) spatially growing (i.e., time harmonic)
instability waves with the same frequency and streamwise wave numbers but with
equal and opposite (real) spanwise wave numbers. The streamwise, transverse,
and spanwise coordinates (x, y, and 2z, respectively), the time t and all
velocities are normalized by &y, §o/4, and A, respectively, where &g is
half the mean shear layer momentum thickness and

(D)
A=U———§—9——— 2.1

is a measure of the velocity difference across the shear layer. When nonlinear
effects do not first intervene, the gradual viscous spreading of the mean shear
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layer causes the common spatial growth rate of the two linear instability waves
to gradually decrease until they approach their common neutral stability point,
whose Strouhal number and streamwise and (real) spanwise wave numbers we denote
by Sqg, «, and B, respectively.

As already indicated, nonlinear effects first become important at the
streamwise position (upstream of the linear neutral stability point) where the
local Strouhal number S (frequency normalized by A/8y) is

1/3
S = So + € S] . (2.2)
Here Sj; < 0 is assumed to be O(1) constant, and ¢ denotes the characteris-
tic amplitude of the instabi]it¥ wave in this region. The instability wave
growth rate, which is also O(e /3), will then be determined by the nonlinear
critical layer effects. Finally, we require that the origin of the spatial
coordinates x, y, z be located within this nonlinear region.

The transverse velocity fluctuations of the two upstream linear instabil-
ity waves will then be of the form

; 1/3 =
. : i(af-e' 7S, t)-1/2 S U'kx
—&(ele . e']B§>ﬁbiaT¢§])<y)e < 1 ) 17¢™ M ’

where t denotes the time,

iz ¥ s pd (2.3

+3 denote the (real) transverse wave numbers of each of the individual insta-
bility waves and 8, where

-1

tan (2.4

S

9'@

denotes the direction of propagation (relative to the mean flow direction) of
these waves at their common neutral state.

= % - Uct (2.5)

is a streamwise coordinate in a reference frame moving downstream with the
neutral phase velocity

U == (2.6)
e

x1 = el/3x 2.7)

is a scaled complex wave number whose imaginary part is minus the common growth
rate of the linear near neutral instability waves. &7 "(y)> is an appropriate
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solution of Rayleigh's equation, which can be taken as the neytral solution to
the required order of approximation. The complex constant at' 1is a measure
of the complex (scaled) amplitude of the two waves.

The normalized pressure is denoted by p and the normalized velocity
components in the moving {£, y, z} coordinate system by {u, v, w}. HWe expect
the solution outside the critical layer to expand like

U= Uy + euy + 84/3u2 . (2.8)
vV = eV] + 54/3V2 + ... 2.9
weew + 3 . (2.10)

! 2
p=cpy v, 2.1

where U(y) + Uc is the base-flow velocity and the form of the upstream linear
solution suggests that vy will be of the form

v, = -ae'P? o e 1B Qg 10l (At el (2.12)

where

=g - S]e]/3t/a , (2.13)

and AT is a function of the slow streamwise variable X1, which will ulti-
mately be determined by the nonlinear flow in the critical layer, but matching
with the upstream linear instability waves requires that it satisfy the
upstream boundary condition

-S,Ulkx, /2

at o gfe 71 as Ky v (2.14)

The 0(e4/3) terms (in (2.8) to (2.11)) are induced by nonlinear effects within
the critical layer and by derivatives of the O0O(e) terms with respect to xj.
They are, therefore, at least in part, associated with linear growth rate
effects. In fact, the entire solution (2.9) satisfies linear dynamics to the
indicated order and is therefore determined by Rayleigh's equation

3 3 ) 2 av

3t * U 3E AR 3t = o , (2.15)

where the primes denote differentiation with respect to y and
7"z — + S+t 3 (2.16)

is the Laplacian in the moving reference frame. It follows that vy is a
function of the form vo(L, xy, y, 2) and therefore satisfies
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- WU B¢y

BX] (2.17)

av 2 v S
<uv2-u">——§=-2u§—§-u"a——‘+—' Lo
3 1@

aC C

where 2 now denotes the Laplacian with respect to ¢, y, and z and the
partial derivatives with respect to { are at constant x; and vice-versa.
It follows from continuity that

QJ‘CD
¥

au av aw du

2 2 2 1
Totay tart " =0 (2.18)

¢§]) must, of course, satisfy the reduced Rayleigh's equation
LMt _ o (2.19)
where

2 n

LV = (& ) (2.20)
dy

denotes the reduced Rayleigh's operator, and u and w are then given by

1 1

uy = <e”32 + e'mz)cos ) Re[d>§])'(y) tan%e S+ ¢(])(y)]A*(x ye'ad

Uy % ]
+ Re F§°’<y,x]>e2“32 @2

and
W, = -2 sin @ sin Bzﬂei(Lj—l d>§” - <I>(])'>A1‘ei°‘C , (2.22)

where the ({-independent term in (2.21), which is governed by linear dynamics
in the main shear layer, is induced by nonlinear effects in the critical layer.

Then since wup, vp, and w» have the same {-periodicity as vy, they
must be expressible in the form

/eez F(m)(y 2%, ye Mal (2.23)
- -2 Rei Z~<”‘)(y Z,x, Yo Mt (2.24)
Rez H(m)(y z,x))e imad (2.25)



Substituting (2.12) and (2.24) into (2.17) we find that

~(1) (h
¢2 = 2 cos Bz ®2 (y,x]) , (2.26)
where ¢§]) satisfies
o S (D" G260 | g2 al
iaUL ¢, " = [(151 - UC dx‘)A ](¢] - a9, + 2o U dx] ¢ 2.27)

It now follows from (2.23) to (2.25) and (2.18) that

Fél) = (sec eF§1) + sin 6 tan © ﬁ;1)><e182 + e"BZ> , (2.28)
and
P . =(1)/ iRz -ifz
H1? = —sin off; (e -~ e ) , (2.29)
where Fél) is given by
2 +
(1) (! cos O (n' 2, U (1)) dA”
F2 = 4>2 - —i'&'—‘(CD] + tan™© U <I>] ) dX.I (2.30)

and Hy can be defined similarly, but will not be needed in the following
analysis.

Equations (2.19) and (2.27) must, in general, be solved numerically.
Fortunately, we need only know the local behavior of their solutions at the
critical level where U(y) = 0. This will occur at the inflection point

U"(ye) = 0, or
Uc =0 , (2.30)

(where the subscript ¢ 1is used to denote quantities at the critical level)
provided we assume, as we now do, that U(y) has only a single inflection
point.

The critical level, which we can always suppose to lie at y = 0, is then
a regular point for the operator (2.20) and equation (2.19) will, therefore,
possess the two linearly independent solutions

Ul"
FA RN %T (&2 . )yz . (2.32)

Ye



and

U|II
<I>(2) =y + ]3—|— (&2 + E,. )y3 + ... (2.33)
' C
as y - 0.
| Then we can put
oV LD L 5 5D (2.34)

1 1

where by 1is a constant which must, in general, be determined along with «
by solving (2.19) numerically subject to the proper boundary conditions at

y = to. Then (2.21) and (2.22) imply that

u; = cos e<eiBz + e—iBZ> {£§§EQ—+ b]<l + tan26>
JEO ) (1 )y} Rete's
+ Rer P c0,x e o (2.35)
v, = -&(e”?’z . e"”"’ﬂﬂeiA’ﬂe‘*"C . (2.36)
W, = -2 sin @ sin BZB - -;: (&2 + % U—S:::—‘)y]ﬂemfeiac oL (2.37)

as y > 0, where we have anticipated the fact that the critical layer solution
produces an O(e) mean flow change across the critical layer but no change in
the second harmonic of the streamwise velocity fluctuation.

It follows from (2.27), (2.32), and (2.33) that there exist two continuous
functions, say &p ; and ¢p », which satisfy

(» y" (1)

L ¢P,l == ¢ (2.38)
U
| and
(hH (h
L ®P,2 = b, (2.39)
but are, in general, unbounded at y = dp 1 will behave like
€1 + €2 1y Infy|l + &y + . . ., as y - O and  ®p ,2 will be regular there.

The relevant solution to (2.27) must then be of the form




(M i + e aF £ (1 + ~(2)
@2 = (Uch] - 1S]A )(¢P,1 - c2’1¢ - b2’1¢ )

N + (D +
- 21“Ax] ¢P,2 - c2,2¢ - b

~(2)
2’2¢ ) (2.40)

where bﬁ n» cf n are real constants (even on the slow scale xj), which must,
in general, be determined numerically.

It now follows from (2.30) that

. 2
=(1) _ sin"@ ,t « o F ot
Fo'l o= - cyy Ax] +e +e,ln tyl + 21<:LAX]b2’2
i + ie 2t lnt .
-3 (Uch] - 1S]A )bz,] + ... as y-~ =0 (2.41)

where the specific forms of ey} and ep are immaterial, and we do not need

the corresponding expressions for Hél) in the following analysis.

3. THE CRITICAL LAYER

Equations (2.35) and (2.37) clearly show that the outer expansion (2.8)
to (2.11) becomes singular at the critical level. The linear small growth
rate cri;ical layer thickness is of the order of the linear growth rate which
is 0(el/3) in the present case. The appropriate scaled transverse coordinate
in this region is therefore

= 4
= €1/3 (3.1

Introducing this along with (2.12), (2.23) to (2.25), (2.40), (2.41), and
(2.32) to (2.37) into (2.8) to (2.11) and reexpanding the result suggests that
the critical layer solution should expand like

u = e]/3UéY + e2/3ﬂo + 831 + 84/332 + ... 3.2)

V = —82/3&(9”32 + e_”'z’z>ﬁeiA1'eimC + c;] + 54/3;2 + . (3.3
T (3.4)

p = 860 + 54/351 + 85/352 + ... (3.9



where we suppose that the e" on ¢ terms have been incorporated in the ug,
ugs etc.,
BO = Ul cos e<e]BZ + e']Bz>ﬂeA+e]°‘(’ , (3.6)

and we have put

vz e /3y (3.7)

for convenience.

The Up, Vn, Wp, etc. are functions of ¢, Y, z, and xj, only and are
determined by the inviscid momentum and continuity equations. It follows from
(2.23), (2.25), (2.28), and (2.41) that matching with the external solution
requires that

, 2nla 2w/
all -i(al+R2Z) .-+ o F _
3 [ J e Au2<c,z,x1>dz dg = 21aAX <b2,2 - b2’2>
2w 1
0 0
i ¥ . + + - ‘
- a(uch] - i5,A ><b2’] - bz’]) , (3.8)
where we have put
-+ _ 1. ]-+ =+
Au2 = ;1m[u2 (C,Y,z2,x,) - uz(c,—Y,z,x])] (3.9
L oo
and
u; = u, cos O = W sin © for n=290,1,2, . .. (3.10

The requirement (3.8) merely states that the change in propagation
direction velocity across the critical layer, as calculated from within, is
equal to the change in that velocity as calculated from the liner external
solution.

It turns out to be convenient to work in terms of the spanwise vorticity
0z M (3.11)

which expands 1ike

1/37 82/38

w = —Ué - € Uoy ~ 1y ¥ EWy ¥, (3.12)
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where

wy = Uy + &a(Emz . e‘mz),QcA“e‘“C . (3.13)
Then w and
u = {u,v,w} (3.14)
satisfy
S
17321 Ya_ . -3 1/3 8 a |
K“ -f 2 )ac tVarte (“ * Uc) a v az]‘*’ 73 UMy + wW,
1/3- 2/3-
- € vzwc - € vaX] (3.1%)
S
1321 Y9 -8 . 1/3 9 3
[(U—e " )éz+VaY+ (U UC) 3X]+w32]g
1/ 1
= {pc + € 3px » 273 pr pz§ (3.16)
1 ¢
and
ug + By e e]/3ux] -0 (3.17)

Substituting the expansions (3.2) to (3.6) and (3.12) into (3.15) and (3.16),
we find that

Zuo = -Uza sin @ cos & Rei(eP? e‘”*z)A"e“"C (3.18)
~  _ripz  _-ipz o e\~ ~ 3~ 3N e ~
Lo = “(e v e X'Q"A € >"‘0Y - (“o at * Yo az>"o - UcYWOX] - Pz
(3.19)
N~ 2.0 Bz -1BZ\ st al
.i’ouo = Uca sin e(e + 0 )RGIA e (3.20)

R

Sy - &<emz + e-iBZXR‘iATeiac)aow + (ao:’Oz - GOZ;’O)Y + “é@lz - Yaom)

(3.21)

1



.Q"Oqz ( 1Bz + IBzXﬁe]A? mc)( Upyy - €OS 6U"'Y> U“I

( iRz . e-iBz)

T : T) fal (——A ~ -t S -t » -
xﬁé(UcA - iS,A" Je + {U;wao - ULU —wou]z—w] cosGqu

C

X 1 1702 0°1¢
~ . ~ ”~ ~+ . ~ . ~ . ~
- Uy sin ewOC - v]u0Y>Y + Uc<cos ew22 - sin ewzc - sin ew]X] Yulx]Y>
~ -t
58 0x.)
0 Ox] Y _ _(3.22)
and
Viy = -u]C Wy, - UOx] , (3.23
where we have put
S
R Y 1\e_
-%:Uca] (UcY‘a)az;’
and
az = -w, €OS O + sin GGZY + 2aB sin Bz ReiA*emc)
U'I' iRz -ipz t iag
- U' ( + e )ReA e (3.24)

C

-~

and matching with the outer solution shows that gqp and G]Y - /2 U ' cos Y2
go to zero as Y » = .

It is now convenient to introduce the following normalized variables

|

X = - 3 S]Uéxl - Xy (3.2%)
5y

n = -2a Y - &UZ S1UC s (3.26)

X Z al - XO , (3.2

12



and
= + 2 20
A= 4Aa (S]UC) UC , (3.28)

where xg and Xp are real constants.

Then (3.18) and (3.20) can be integrated immediately to obtain

~ U u's '
Up = - < 2 ] sin © tan © cos fz A&z1w‘°’ X . (3.29)
-~ uu's
Wy = - ¢ i ] sin © sin Bz ﬂh N(O) 1X s (3.30)
where we have put
X . =~
o < [ e aar (3.3D)

It is worth noticing that
W ( i ._)exx
n - ik

A-)ezi

when

so that (3.29) approaches the linear critical solution (g1ven by the generali-
zation of eq. (4.34) in Goldstein and Leib 1988) when approaches the lin-
ear upstream condition (2.14). :

Equations (3.19) and (3.21) clearly possess solutions of the form

) .
~ T evd 1 , § : (1 -, 1 (nX+mB2)
Uiy = 3 Uc Y© - > sin eUC Qn’m(n,x)e . (3.32)
n,m=-2
and
2 1
- 1 - §: QD) -, _i(nX+mp2)
W, = SlUcUc sin 6 wn,m(“’X)e . (3.33)
n,m=-2

where the first term in (3.32) was inserted to insure that Q(]) + 0 as
n+ +o for all n,m.

Substituting (3.32) and (3.33) along with (3.29) and (3.30) into (3.19)
and (3.21) shows that

13



. RNOIE 2 (0D
LoMg. 5 = 1 sec e(z sin elw] ‘ - ImA My ) , (3.
M
Ly g = 0 (3.
M © .. . 2.(0).(0)
L,0p g = tan © sec e(Aw]nn - 41 sin’ony Ou)? ) Q3

where the star denotes the complex conjugate, we have put

L = —§~+ inn for n=20,1,2, ..., (3.

N oax

and in writing down (3.36) we have anticipated the fact that the relevant
solution to (3.35) is the trivial solution

(n

Wy o =

Inserting (3.31) into (3.34) and (3.36) and integrating yield

X
Wé}; - i sec © Rej A*(?)e“”"[I]&) + 4 sinfe(x - I)IOG)]di (3.
-0
and
= L
Qy'3 = -tan © sec oe”21™ J AGOE ™, GOdR + 2 sinferfo| | (3.
where we have put
X ~r
I,(x) = J e M(x - OMAGOIX  for n=0,1,2, . . . 3.

-@

Inserting (3.39) along with (3.29) to (3.33) into (3.21) and integrating we
obtain

x -~
(1) _ tan 6 sec o ij‘ A*(I)e“”x[l (X) = 2(X = )OI, 00

%,2 = 2 1
-4 - 0 sinfer (0]di . G
Since G1Y and ;1 are real we must set
w2, = gy (3.

14

0 . (3.

34)

35

.36)

3N

38)

K):))

40)

41)

42)

43)



(n *
Qy 2y = Qé]; | (3.44)
D) (1)* ’
and
) *
0300 = %'y - (3.46)
It is easy to show that
} ~
(M (. . e =Ny
Qg o COS © + Hy o sin 6 = tan o ﬁeJ A*Goe™ ™1, GO dx (3.47)
() i D (0)
0],] = 3 S]Uc sin ewlni (3.48)

and

(1 . 2aY (A(1) D)
N]'] sin & - S]Uc (Q]’] cos 6 + w],]n sin e)]_
X

n

i 1y€0)

= EL](N 1X /n

~

where C 1s a constant whose specific value will not effect our analysis.
The remaining Q's and W's can be similarly determined, but are not used in
the following analysis.

It now follows from (3.32) and (3.33) that (3.22) possesses a solution of
the form

3
Gy = - 3 sineu; > QiR (e (MXemBD) (3.50)
n,m=-3
where
)
Q;%m +0 as n > tm. (3.51)

Substituting this along with (3.32), (3.33), (3.48), (3.38), and (3.43) to
(3.46) into (3.22) and (3.23) yields
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) ay 0 if L )
[01 ] C(“ - 39 S1YcMik )n] = 2‘{A[°o + Qo * tan 9(”

(D) 23 [0, (1) (0 (1) (O (1)
- AQ5 } + 2 sin’e 5 [w, Ug s - WiVt o+ w2 Vz,o]

u_ss (Ué")( | )
. UU'A- + iA] . (3.52)
262 sin @ Uéz 2 cTeX -
where
(D a
Up.an = Q.2 (3.53)
) )
Vg5, = tan oM, (3.58)
and
S0 M
Vg o = Q' (3.55)
Inserting (3.39) and (3.42), we find that
8 (0 <1> 403, (1) 0, 0)
Rg 5 £ 2 sin? (w Wi vg! 2) - sin @ tan e(w 35t 2000
(0
“lnn31§i§> (3.56)
where the Jp's depends on both x and n and are defined by
| X
), =+ Re| A*GOG - ?)3[& - ¥sine s i _a_] ~inXp (%ydi (3.57)
In =3 n 0
Jy = 103y - 3y (3.58)
where
( X i X
1, = % sin%e &bJ‘ A* GO - I>3e“”x10<§>d§ N % J AGOG - 0% ‘”X1;<§>d§
(3.59)
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and

X
3y = -2 AbJ‘ A* GO (R - i)[g sine(x - %)210<§>4-<i - 0L - 12(§>]e'”‘x dx.

(3.60)
Then, upon integrating by parts and inserting (3.31), we obtain
X .
J e”‘"(i'X)RO,Z dx = sin @ tanee™ "X ;J]§§12<i> - 20,21,(0
X
- J ei"XA<§>[2J4<§> - 20,0 + 1,60 - J3<§>]d§ . (3.6D)

-

Substituting (3.40) into (3.55) we find after some manipulation that

N i -2inx/_3 _2ink, (1) 1 [ -y —inXy ,=
VZ.O =-3 e o e U2,0 +3 tan © sec 6{A(x)e I](x)

.2 sinzee‘Z‘"x1§<i>] , (3.62)

where

Q. (D
UZ,On = 02’0 . (3.63)

Inserting this along with (3.31) into

x - o~
J e—m(x—x)R

-0

2.0 dx ,

where

2, 90

- . * (1)
RZ,O =2 sin"®@ 3n W (3.64)

m V2.0

and integrating by parts now shows that

()
2,0

X
~in(X=x) = 20 inX e,
J e R2 0 dx = i sin“Be Iz(x)U

(x)

2

ol (%)]di . (3.65)

X
- sin & tanZee” NX J I§<§>[A(§>e‘“XI]<§> + 2 sin g

-0
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It is now easy to write down the solution to (3.52) by using (3.61), (3.65),

(3.39), (3.42), and (3.47). Using the resulting formula for Q{2) and
) . 1,1
integrating by parts shows that

(o]

2
USUIII
1 (2) c’l ¢ 1 .
5= Q dn = —5——— (— U U'A- + iA
2w 1,1 40L2 sin eUéZ 2 ccx )
XX e
+ sec © tan © f j K(X| ,x])A(x)A(x])A(x + Xy - x)dx] dx , (3.66)

where we have put

KGKIR, KD = (K - I){[% (X - % + sin®e(X - §]>][2<§ - R - G - I)]

4 sin4e[<§ SEpE e G- DG - §‘>]}. (3.67)
It now follows from (3.8) and (3.24) to (3.28) that

| uu
: (2) 1.2 . + - T [Zcc . + -
sin © 01,1 dn = > lsluc[UcAi(bZ,Z - bz’z) - az ( 5 Ai + 1A)(b2,] - b2‘1>}.

-0

(3.68)
Inserting (3.66) into this result yields |
1 2 X S T AT ~ Tl et
Lacaseytane [ [ KGIGEDAGOAGDAG + ¥ - 0diy dX, (3,69
K - )
where
. ] iv U
T2y 1t - c’c
== U o Ue(bs 5 - 0 2) * (3.70)

is the reciprocal of the scaled complex wave number in the linear amplitude
(2.14) and we have put

inUl' '\ S
1.1 by - b, + ¢
Y w | 2,1 2,1 U‘Z
c

2
]U

(3.7

O

4a

Equation (3.69) is the final result. It determines the amplitude of the
instability wave. It must be solved subject to the upstream boundary condition
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A > eRX+iog a5 X » - | (3.72)

where the real constant ¢o 1is an as yet unspecified initial phase factor
which was introduced via the arbitrary origin shifts xo and Xgo 1in (3.25)
and (3.27).

4. ASYMPTOTIC SOLUTION OF AMPLITUDE EQUATION

The principal result of this paper is given by (3.69) together with the
upstream boundary condition (3.72). The numerical solution to this problem,
which is discussed in the next section, appears to develop a singularity at a

finite value of X, say Xs. In this section we determine the asymptotic form

of the solution as X » Xg. To this end we substitute

a

G, - =y 3+10 4.1

A =

where ‘is and o are real constants and a is a complex constant, into the
integral of (3.69) and change the integration variables from X; and X to
(xg - x1)/{xg - x> and (xg - X)/(xg - x) to show that

X X
A alal?
KO X, X OACOAK)A* (X + X, - x)dX, dX = D(o) , (4.2)
] 1 1 1 (% =\4+i¢
X = X)
- -0 S
where
] du dv
D(O)= -~ s r
J] v3+1o J u3+lo(u V- ])3—10
v
x [— %(v - 1)3 + (v - 1)2{u -v - sinze[u - Vv + 4(u - I)sinzel}

¢ 2(v - D - »3inde(l - 2 sinze)]

““ 2 ~ .
C_(v]|® m+io
- . ‘ E m_ <2V - ') - 1lfav
v +lo(v _ ])2 m+ io v
J 1 M=~2
! 3+i 2 € (x| M|
(1 - x)°*'° m 2y - 1\"*!e
- | E A [{ - ) _ l}‘dx , (4.3)
Jo M=-2

and the Cy and Cpn are complicated functions of the indicated arguments
which are listed in the appendix. It is worth noting that Cp 1is a polynomial
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in sin © whereas Em is a Fourier series in ©. Carrying out the last
integration gives

@©

1y C],O(“|0) + C]’z(nlo)cos 20 + C]l4(n|o)cos 40
nin + (n + 2)(n + 3)(4 + io)n

D(g) =
n=1

CZ,O(nIU) + Cz’z(nlo)cos 20 + C2’4(n|o)cos 40
* (v D+ 20+ D@+ o)

C
. 3.0 (4.4)

(nlo) + Cy 2(n|o)cos 26 + C, 4(nlc)cos 46
(n + 2)(n + (4 + ic)n ’

where (a)y denotes the generalized factorial function T[(a + n)/T(a) and the
coefficients Cy o,. . . , C3,4 are given in the appendix.

Ay becomes large compared to A as X » Xg, and the left hand side of
(3.69) is batanced by the integral term on the right side. Substituting (4.1)
into the left hand side shows that the two terms will balance when o
satisfies

D(o) 2. 1
T U tan‘e = —— . (4.5)
ve|al

_Figures 1 and 2 show o and la‘VyEI respectively as functions of arg
(1/yk), which are used to evaluate asymptotic curves in figures 3 to 6 (shown
as dotted lines).

Parts of the derivations in this section were done with MACSYMA (412.61
for DEC VAX 8600 Series) batch programs. Interested readers can contact the
second author for the programs.

5. NUMERICAL RESULTS AND DISCUSSION

The relevant solutions to (3.69) and (3.72) involve the two complex param-
eters « and vy, the propagation angle 6, and, the still unspecified initial
phase factor . But introducing the rescaled variables A/|y|1/2|k|2 and
|k|x - X5, where x5 and ¢, are chosen so that

i ieg = 0 Iyl ARl (5.1

shows that these solutions can be completely characterized by the two imaginary
parameters In («/|x|) and 1In (y/|y|), or equivalently by the arguments of «
and y. The real part of « 1is the scaled growth rate of the upstream linear
instability wave in the vicinity of its neutral stability point, and the imagi-
nary part is the scaled deviation of the wave number from its neutral value
corresponding to the prescribed Strouhal number deviation Sj.

Equation (3.69) was solved numerically by using a fourth order predictor
corrector scheme to advance the solution downstream from the prescribed
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upstream linear state (eq. (3.72)). The double integrals were computed by
using the Trapezoidal rule with the upstream "tails" evaluated analytically
from the upstream linear solutions. « and y must, in general, be found
numerically by solving the homogeneous and inhomogeneous Rayleigh's equations
(2.19) and (2.27). -Analytic solutions can only be obtained for the "tanh"
shear layer (Huerre, 1980; 1987) where

(H (2) \ - v - _
Ue = (U + U )lZA’ Ug = a=1, Ue'' = -2, b3 v %y = 0,

Figures 3 and 5 are plots of the instability wave growth rate |A|%/|A|
for various values arg y, arg «, and cos 8. HWe only show results for
-w/2 < arg x < O because (3.69) implies that A(x, «*, y*) = A*(x, «, ¥).
Notice that the upstream linear growth rate is initially reduced when arg vy
is in the range -m/2 < arg ky < w/2. This is because the nonlinear term
behaves like -yCo|A|2A for small |A|, where C, is a positive real constant.
The effective growth rate is therefore reduced by the factor 1 - ColA|2y, but
(excapt in the special case arg y = arg « = 0) this trend is eventually
reversed, and the yirowth rate rapidly increases until the amplitude becomes
singular at some finite downstream distance for all values of y - suggesting
an explosive growth of the instability wave there.

This is shown somewhat better in figures 6 to 8, which are plots of the
real part of the scaled instability wave amplitude versus the scaled streamwise
coordinate x. Also shown in the figures are the results computed from the
asymptotic solution (4.1), with the singularity location xg determined from
the numerical solution. The latter solutions clearly approach the asymptotic
result as |xc - x| becomes small. Since (4.1) implies that the asymptotic
growth rate TAI;/ Al behaves like (|A|/|a]>!/3 in the vicinity of the singu-
larity, the initial scaling, i.e., growth rate = 0(5)1/3, is unchanged by the
singularity. This suggests that the basic asymptotic structure of the critical
layer will remain intact, and the present solution will not break down until
the amplitude |A| of the external instability wave becomes order one. The flow
will then be fully nonlinear and unsteady in the ma‘n part of the shear layer,
j.e., it will be governed by the full Euler's equations there.

This is quite different from the nonlinear critical layer behavior found
by Goldstein and Leib (1988) for the two-dimensional case where the critical
layer nonlinearity produced a redistribution of vorticity that rapidly reduced
the instability wave growth rate to zero. The three-dimensional effects in
the present analysis allow for vortex stretching, which completely counteracts
this effect and produces the explosive instability wave growth. This phenomena
is probably masked at subsonic speeds by the fact that the linear growth rate
of the three-dimensional wave is much smaller than that of the two-dimensional
wave. The latter wave can alter the criticai-layer structure of the oblique
waves, and the present analysis assumes that the two-dimensional wave is com-
pletely absent in the nonlinear region. It should be possible to eliminate
the two-dimensional wave in carefully controlled subsonic experiments, but it
would probably be much easier to observe the phenomena at supersonic speeds
where the most rapidly growing linear mode is oblique. While the basic ampli-
tude equation (3.69) was derived only for incompressible flow, it applies to
the compressible case as well, and there is no a-priori restriction on the
Mach number. It is worth noting that the nonlinear critical layer effects
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should be much more important at higher Mach numbers, because the linear growth
rate rapidly decreases with increasing Mach number (Jackson and Grosch, 1988).

Figures 6 to 8 show that the instability wave amplitude undergoes succes-
sive oscillation upstream of the singularity. Similar behavior was observed
in the two-dimensional analysis of Goldstein and Leib (1988) and in the calcu-
lations of Benney and Maslowe (1975), Huerre (1977), and Miura and Sato (1978).
The amplitude oscillations imply periodic reversal of energy transfer between
the fluctuations and the mean flow, and possibly between the fluctuations them-
selves. By considering the Reynolds-stress changes that occur with nutating
elliptic vortices, Browand and Ho (1983) came up with a simple kinematic expla-
nation for this phenomenon. The reader is referred to Ho and Huerre (1984,
p. 410) for details.

Viscous effects will undoubtedly alter the critical layer behavior
described above. MWe decided not to include them because they would greatly
complicate an already complex analysis. They were, however, included in the
simpler analysis of Goldstein and Leib (1989), and we expect them to act simi-
larly in the present situation. The former analysis suggests that viscous
effects always delay the explosive growth and that they will eliminate it
entirely for a certain range of values of vy, «, and ©, provided an appropri-
ate scaled viscous parameter exceeds a certain finite value. In that case,
the solution will just go to a finite amplitude equilibrium state further
downstream.

While the present scaling may seem to be rather special, the composite ex-
pansion technique of Goldstein and Leib (1988) shows that the instability wave
adjusts to the proper scalin? automatically as it propagates downstream toward
the neutral stability point. The nonlinear region actually sets its own loca-
tion in the final composite expansion. The only requirement is that the insta-
bility wave amplitude remain fairly small in the region where the linear
growth rate is fairly small. This requirement should be very nonrestrictive
at supersonic speeds where the linear growth rate is always small. However,
the experiments show that nonlinearity sets in at very small amplitudes, even
at subsonic speeds, which suggests that the nonlinear effects are localized
and therefore confined to the critical layer (since this is the region where
nonlinearity would first come into play; Goldstein and Leib, 1988; Goldstein
and Hultgren, 1988).

Equations (2.7), (3.25), and (4.1) show that the explosive growth occurs
when

X - xg = 0(1)
where
- xS + xo
S _ % a]/3S]Ué

TAs in Goldstein and Leib (1988), the nonlinear solution can be consid-
ered to be an inner solution in a composite expansion whose outer solution is
the linear wave.
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is the singularity location in the unscaled streamwise coordinates. The
streamwise extent of the fully nonlinear region is therefore of the same order

as the shear layer width.

It is also worth noting that the asymptotic instability wave amplitude is
uniquely determined by the asymptotic solution and is therefore independent of
the upstream conditions. Figures 9 to 11 show the wavelength reduction
J&n(Ay/A) as a function of the scaled streamwise coordinate x. The asymptotic
results computed from (4.1) are indicated by the dashed lines.

The authors would like to thank Dr. Lennart Hultgren for his helpful
comments on the manuscript and Dr. S.J. Leib for helping with the computer

program.
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APPENDIX

The detailed expressions for coefficients used in (4.3) and (4.4) are

2

C, = gov=ts - Y =W 0% 4 g LYt ] s, (A1)
v -1 w-h
~ v -3 W - qovael .2 sv _ 4y + 3 . 4
v 3 sin"e - 4 T sin 9, (A.2)
v -D -1
" v -1 35v% - 28v 4+ 5 . 2 Sv2 _ 4y + 2 . 4
CO = 6 v T - 5 sin“® + 8 — sin '8, (A.3)
- v -1 -1
" v -5 3w - 30vase7 .2 W _8v+3 .4
C_] =-5 -3¢t 5 sin®® - 4 — sin’'o, (A.4)
(v - 1) (v - 1)
- S5v -3  1vZ - 1lv+3 .2 W - el .4
C, = 3o - 3 sin%e + 4 2=V 1 sipt, (A.5)
(v -1 -1
c, - %(1 - 2% 4 4x2) - %(2 B 4+ 4x2>cos 20 + %(1 S X s x2>cos a0, (A.6)
C, - -(2 -3 s 7x2> . %(8 ~ 16x + l]x2>cos 26 - %(4 - x4 3x2>cos 40,
(A.7)
PO | AN 2 2
Cy = 2<6 ~ Bx + 19x ) - 2(12 _18x + 11x )cos 20 + (3 + 2 )cos 40, (A.8)
Cy = -(2-x+6x%) « 38 - 8x + 5x°)cos 20 - 3(4 + 2x + 3°)cos 40, (A9
C_2 = %(1 + 3x2> - %(2 - X + x2>cos 26 + %(1 + X + x2>cos 49, (A.10)
] . . . . | .
Cp o= 3(-1 = H0)y Ly = 20100y v 301 = @)y = 22 = Ho) e 33 = B0,
A1)
Cy g = (1 = T o+ 3io) = 30 = o)+ 2 - D), (A.12)
Co w2l = §0) o= TG0 o+ 22 i) - 62 - o) 5 o+ 33 - Qo)
3,07 n+2 n+2 o 2 n+2 ne2 2 n+2,

(A.13)
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-(-1 - 1o)n+2 + 4(-io)n+2 - 61 - 1o)n+2 + 42 - io)n+2 - (3 -

5 . . . . 1
= i(_] - 1o)n+2 - 8(—lo)n+2 + 9(C1 - 1°)n+2 - 402 - lo)n+2 + 5(3 -

. T, 1 . 5 .
-2(-1 -~ 10)n+2 + E_(—1°)n+2 - z—(l - 1c)n+2 + 2(2 - 1°)n+2

1 .
- 5(3 - 1o)n+2,

1
2

1 . . . ] .
E('] - 1o)n+2 + (—1o)n+2 - (2 - 1o)n+2 + 5(3 - lo)n+2,

2,4

1 3 3 1

3.4 ° z(—] - ic)n+2 - E(-ic)n+2 + 201 - i°)n+2 - 5(2 - i°)n+2 + 2(3 -
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